Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143727

ABSTRACT

The COVID-19 pandemic has modified the seasonal pattern of respiratory infections. The objective of the present study is to characterize the out-of-season circulation of influenza viruses and an influenza outbreak that occurred in southern Italy in August 2022. Nasopharyngeal swabs collected from patients with influenza-like illnesses (ILI) were tested for the presence of influenza and other respiratory viruses. Epidemiological investigations on 85 patients involved in an influenza outbreak were performed. Sequencing and phylogenetic analysis of hemagglutinin genes was undertaken on samples positive for influenza A. In August 2022, in the Apulia region (Italy), influenza A infection was diagnosed in 19 patients, 18 infected with A/H3N2 and one with A/H1N1pdm09 virus. Seven influenza-positive patients were hospitalized with ILI. A further 17 symptomatic subjects, associated with an influenza outbreak, were also tested; 11 were positive for influenza A/H3N2 virus. Phylogenetic analysis of 12 of the A/H3N2 sequences showed that they all belonged to subclade 3C.2a1b.2a.2. The A/H1N1pdm09 strain belonged to subclade 6B.1A.5a.2. The out-of-season circulation of the influenza virus during the summer months could be linked to changing dynamics in the post-COVID-19 era, as well as to the impact of climate change. Year-round surveillance of respiratory viruses is needed to monitor this phenomenon and to provide effective prevention strategies.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Seasons , Phylogeny , Pandemics , COVID-19/epidemiology , Influenza A virus/genetics , Italy/epidemiology
2.
Vaccines (Basel) ; 10(5)2022 Apr 24.
Article in English | MEDLINE | ID: covidwho-1862933

ABSTRACT

Since its initial detection, the SARS-CoV-2 Omicron sublineage BA.2 has been spreading rapidly worldwide. The aims of this study were to describe the first 284 patients infected with the Omicron BA.2 variant of concern (VOC) in the Apulia region of southern Italy and to assess the differences in the demographic and clinical characteristics of patients infected with the SARS-CoV-2 BA.1 and BA.2 variants. The demographic characteristics of patients, as well as information about symptoms, vaccinations and hospitalizations for COVID-19, were collected. A subset of samples from patients infected with the BA.2 variant was subjected to whole-genome sequencing. The characteristics of the first 284 patients infected with Omicron BA.2 and the first 175 patients infected with Omicron BA.1 were compared. The proportion of patients infected with the BA.2 variant rapidly increased, from 0.5% during the third week of 2022 to 29.6% during the tenth week of 2022. Ten isolates (out of 34 BA.2 isolates) contain the substitutional mutation, H78K in ORF3a, and four isolates include two mutations, A2909V in ORF1a and L140F in ORDF3a. Compared with patients infected with BA.1, those infected with BA.2 were more likely to be symptomatic and booster-vaccinated, and showed a shorter time from the last dose of vaccine to infection. The high transmissibility and immune-evasive properties of Omicron BA.2, which will become the leading SARS-CoV-2 VOC, suggest that short-term public health measures should not be discontinued in Italy.

3.
Vaccines (Basel) ; 10(2)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1687067

ABSTRACT

The Omicron variant of concern (VOC), first detected in Italy at the end of November 2021, has since spread rapidly, despite high vaccine coverage in the Italian population, especially in healthcare workers (HCWs). This study describes an outbreak of SARS-CoV-2 Omicron infection in 15 booster-vaccinated HCWs. On 16 December 2021, two HCWs working in the same ward were infected with SARS-CoV-2. The Omicron VOC was suspected due to S gene target failure on molecular testing. Further investigation revealed that 15 (65%) of 23 HCWs attending a social gathering on 13 December were infected with Omicron, as shown by whole-genome sequencing, with a phylogenetic tree suggesting a common source of exposure. Five of these HCWs experienced mild symptoms. A patient with multiple chronic conditions hospitalized in the same ward was also infected by one of the HCWs involved in the outbreak. Despite being booster vaccinated, this patient required ICU treatment. Ten subjects achieved negativity in 10-19 days. The outbreak in booster-vaccinated subjects confirms the high transmissibility and immune evasion of the Omicron VOC. More stringent non-pharmaceutical interventions, administration of booster doses, and genomic surveillance are crucial long-term strategies to mitigate the consequences of the spread of the Omicron VOC.

4.
Vaccines (Basel) ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1524228

ABSTRACT

Differences in the demographic and clinical characteristics of patients infected with the Alpha and Delta SARS-CoV-2 variants of concern in a large region of Southern Italy were assessed. Two cohorts of positive patients were compared. The Alpha group consisted of 11,135 subjects diagnosed between 21 March and 21 April 2021, and the Delta group consisted of 499 positive subjects diagnosed between 21 July and 21 August 2021. A descriptive and statistical analysis of the demographic and clinical characteristics of the two groups was performed. The proportion of patients with mild and moderate infections was significantly higher in the Delta than in the Alpha group (p < 0.001). In fully vaccinated patients, the proportion of symptomatic individuals was significantly higher in the Delta than in the Alpha group. The Delta group showed odds ratios of 3.08 (95% CI, 2.55-3.72) for symptomatic infection and 2.66 (95% CI, 1.76-3.94) for hospitalization. Improving COVID-19 vaccination rates is a priority, since infection with the SARS-CoV-2 Delta variant has a significant impact on patient outcomes. Additional targeted prevention strategies such as social distancing, the use of masks in indoor settings irrespective of vaccination status, and the use of a sanitary passport could be crucial to contain further spread of SARS-CoV-2 infection.

5.
Biomed Res Int ; 2021: 3893733, 2021.
Article in English | MEDLINE | ID: covidwho-1412962

ABSTRACT

BACKGROUND: In emergency hospital settings, rapid diagnosis and isolation of SARS-CoV-2 patients are required. The aim of the study was to evaluate the performance of an antigen chemiluminescence enzymatic immunoassay (CLEIA) and compare it with that of Real-time Reverse transcription-Polymerase Chain Reaction (RT-qPCR), the gold standard assay, to assess its suitability as a rapid diagnostic method for managing patients in the emergency department (ED). METHODS: Consecutive patients with no previous history of SARS-CoV-2 infection attending the ED of the Policlinico Hospital of Bari between 23rd October and 4th November 2020 were enrolled. Clinical and demographic data were collected for all patients. Nasopharyngeal swabs collected on admission were subjected both to molecular (RT-qPCR) and antigen (CLEIA) tests for SARS-CoV-2. The performance of the CLEIA antigen test was analyzed using R Studio software and Microsoft Excel. Receiver operating characteristics were also performed. RESULTS: A total of 911 patients were enrolled, of whom 469 (51.5%) were male. Of the whole cohort, 23.7% tested positive for SARS-CoV-2 by RT-qPCR and 24.5% by CLEIA. The overall concordance rate was 96.8%. The sensitivity, specificity, positive predictive value, and negative predictive value of the antigen test were 94.9% (95% CI, 91.9-97.0), 97.4% (95% CI, 96.5-98.1), 91.9% (95% CI, 89.0-94.0), and 98.4% (95% CI, 97.4-99.1), respectively. The area under the curve (AUC) was 0.99. The kappa coefficient was 0.91. The overall positive and negative likelihood ratios were 37 (95% CI 23-58) and 0.05 (95% CI, 0.03-0.09), respectively. CONCLUSIONS: Data analysis demonstrated that the antigen test showed very good accuracy for discriminating SARS-CoV-2-infected patients from negative participants. The CLEIA is suitable for rapid clinical diagnosis of patients in hospital settings, particularly in EDs with a high prevalence of symptomatic patients and where a rapid turnaround time is critical. Timely and accurate testing for SARS-CoV-2 plays a crucial role in limiting the spread of the virus.


Subject(s)
COVID-19 Serological Testing/methods , Nasopharynx/virology , Adult , Aged , Antigens, Viral/analysis , Area Under Curve , COVID-19 Nucleic Acid Testing/methods , Emergency Service, Hospital , Female , Humans , Immunoassay , Italy , Luminescent Measurements , Male , Middle Aged , Sensitivity and Specificity , Tertiary Care Centers
6.
Trop Med Infect Dis ; 6(3)2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1411038

ABSTRACT

The SARS-CoV-2 P.1 variant of concern (VOC) was first identified in Brazil and is now spreading in European countries. It is characterized by the E484K mutation in the receptor-binding domain, which could contribute to the evasion from neutralizing antibodies. In Italy, this variant was first identified in January 2021. Here, we report an autochthonous outbreak of SARS-CoV-2 P.1 variant infections in southern Italy in subjects who had not travelled to endemic areas or outside the Apulia region. The outbreak involved seven subjects, three of whom had received a COVID-19 vaccine (one had received two doses and two had received one dose). Four patients had a mild clinical presentation. Laboratory investigations of nasopharyngeal swabs revealed that all strains were S-gene target failure-negative and molecular tests revealed they were the P.1 variant. Whole-genome sequencing confirmed that five subjects were infected with closely related strains classified as the P.1 lineage. The circulation of VOCs highlights the importance of strictly monitoring the spread of SARS-CoV-2 variants through genomic surveillance and of investigating local outbreaks. Furthermore, public health measures including social distancing, screening, and quarantine for travelers are key tools to slow down the viral transmission and to contain and mitigate the impact of VOC diffusion, and rapid scaling-up of vaccination is crucial to avoid a possible new epidemic wave.

7.
Vaccines (Basel) ; 9(8)2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1325805

ABSTRACT

BACKGROUND: Solid-organ transplant (SOT) recipients are at a high risk of severe COVID-19, and are priority for vaccination. Here, we describe three cases of severe COVID-19 caused by SARS-CoV-2 B.1.1.7 lineage in vaccinated SOT recipients. METHODS: Three SOT patients were hospitalized in the Policlinico Hospital of Bari (southern Italy) and underwent nasopharyngeal swabs for molecular detection of SARS-CoV-2 genes and spike protein mutations by real-time PCR. One sample was subjected to whole-genome sequencing. RESULTS: One patient was a heart transplant recipient and two were kidney transplant recipients. All were hospitalized with severe COVID-19 between March and May 2021. Two patients were fully vaccinated and one had received only one dose of the BNT162b2 mRNA vaccine. All the patients showed a high viral load at diagnosis, and molecular typing revealed the presence of B.1.1.7 lineage SARS-CoV-2. In all three cases, prolonged viral shedding was reported. CONCLUSIONS: The three cases pose concern about the role of the B.1.1.7 lineage in severe COVID-19 and about the efficacy of COVID-19 vaccination in immunocompromised patients. Protecting immunocompromised patients from COVID-19 is a challenge. SOT recipients show a suboptimal response to standard vaccination, and thus, an additive booster or a combined vaccination strategy with mRNA, protein/subunit, and vector-based vaccines may be necessary. This population should continue to practice strict COVID-19 precautions post-vaccination, until new strategies for protection are available.

8.
Viruses ; 13(5)2021 05 12.
Article in English | MEDLINE | ID: covidwho-1227072

ABSTRACT

This study describes a case of SARS-CoV-2 reinfection confirmed by whole-genome sequencing in a healthy physician who had been working in a COVID-19 hospital in Italy since the beginning of the pandemic. Nasopharyngeal swabs were obtained from the patient at each presentation as part of routine surveillance. Nucleic acid amplification testing was performed on the two samples to confirm SARS-CoV-2 infection, and serological tests were used to detect SARS-CoV-2 IgG antibodies. Comparative genome analysis with whole-genome sequencing was performed on nasopharyngeal swabs collected during the two episodes of COVID-19. The first COVID-19 episode was in March 2020, and the second was in January 2021. Both SARS-CoV-2 infections presented with mild symptoms, and seroconversion for SARS-CoV-2 IgG was documented. Genomic analysis showed that the viral genome from the first infection belonged to the lineage B.1.1.74, while that from the second infection to the lineage B.1.177. Epidemiological, clinical, serological, and genomic analyses confirmed that the second episode of SARS-CoV-2 infection in the healthcare worker met the qualifications for "best evidence" for reinfection. Further studies are urgently needed to assess the frequency of such a worrisome occurrence, particularly in the light of the recent diffusion of SARS-CoV-2 variants of concern.


Subject(s)
COVID-19/transmission , Reinfection/genetics , SARS-CoV-2/pathogenicity , Adult , Antibodies, Viral/genetics , COVID-19/genetics , Female , Genome, Viral/genetics , Health Personnel , Humans , Immunoglobulin G , Italy/epidemiology , Reinfection/metabolism , SARS-CoV-2/genetics , Serologic Tests , Whole Genome Sequencing/methods
9.
Clin Microbiol Infect ; 27(8): 1174.e1-1174.e4, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1226280

ABSTRACT

OBJECTIVES: In December 2020, Italy began a national immunization campaign using the BNT162b2 coronavirus disease 2019 (COVID-19) mRNA vaccine, prioritizing healthcare workers (HCWs). Immune serum from vaccinated subjects seems (largely) to retain titres of neutralizing antibodies, even against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VOC 202012/01-lineage B.1.1.7. Here, we describe an outbreak of SARS-CoV-2 lineage B.1.1.7 infection in three HCWs in a hospital setting; two of the HCWs were fully vaccinated (i.e. had received two doses). METHODS: Two physicians and one nurse working on the same shift on 20th February 2021 were involved in the outbreak. Real-time PCR, antigen tests, and serological tests for the IgG anti-spike protein of SARS-CoV-2 were performed, along with whole-genome sequencing (WGS). RESULTS: SARS-CoV-2 infection was confirmed in all three HCWs; all presented with mild symptoms of COVID-19. The two physicians were fully vaccinated with BNT162b2 vaccine, with the second dose administered 1 month before symptom onset. Both had high titres of IgG anti-spike antibodies at the time of diagnosis. WGS confirmed that all virus strains were VOC 202012/01-lineage B.1.1.7, suggesting a common source of exposure. Epidemiological investigation revealed that the suspected source was a SARS-CoV-2-positive patient who required endotracheal intubation due to severe COVID-19. All procedures were carried out using a full suite of personal protective equipment (PPE). CONCLUSIONS: This mini-outbreak highlights some important issues about the efficacy of vaccines against transmission of SARS-CoV-2 variants, the high risk of exposure among HCWs, and the need for optimized implementation of PPE in hospitals. The wide circulation of VOC 202012/01 in Europe and Italy highlights the need to improve surveillance and genetic sequencing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , Disease Outbreaks , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination , Adult , BNT162 Vaccine , COVID-19/transmission , COVID-19/virology , Female , Health Personnel , Humans , Immunoglobulin G/blood , Intubation, Intratracheal , Italy/epidemiology , Male , Middle Aged , Personal Protective Equipment , Phylogeny , Whole Genome Sequencing
10.
Int J Environ Res Public Health ; 18(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1217077

ABSTRACT

Epidemiological and virological studies have revealed that SARS-CoV-2 variants of concern (VOCs) are emerging globally, including in Europe. The aim of this study was to evaluate the spread of B.1.1.7-lineage SARS-CoV-2 in southern Italy from December 2020-March 2021 through the detection of the S gene target failure (SGTF), which could be considered a robust proxy of VOC B.1.1.7. SGTF was assessed on 3075 samples from week 52/2020 to week 10/2021. A subset of positive samples identified in the Apulia region during the study period was subjected to whole-genome sequencing (WGS). A descriptive and statistical analysis of the demographic and clinical characteristics of cases according to SGTF status was performed. Overall, 20.2% of samples showed SGTF; 155 strains were confirmed as VOC 202012/01 by WGS. The proportion of SGTF-positive samples rapidly increased over time, reaching 69.2% in week 10/2021. SGTF-positive cases were more likely to be symptomatic and to result in hospitalization (p < 0.0001). Despite the implementation of large-scale non-pharmaceutical interventions (NPIs), such as the closure of schools and local lockdowns, a rapid spread of VOC 202012/01 was observed in southern Italy. Strengthened NPIs and rapid vaccine deployment, first among priority groups and then among the general population, are crucial both to contain the spread of VOC 202012/01 and to flatten the curve of the third wave.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Europe , Humans , Italy/epidemiology
11.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1054616

ABSTRACT

The coding-complete sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was obtained from a sample from a 25-year-old female returning to the Apulia region of Italy from England. The characterized strain showed all of the spike protein mutations defining SARS-CoV-2 VUI 202012/01, as well as other mutations in the spike protein and in other genomic regions.

SELECTION OF CITATIONS
SEARCH DETAIL